

LP-50 Replacement Container System Project By Mark L. Bibeault, Heidi Reichert, Brian Price

Los Alamos National Laboratory Gas Transfer Systems LA-UR–18-24102

UNCLASSIFIED

What is an LP-50?

Summary

- History of LP-50s
- "Clone" Improvements Why Upgrade
- Design Criteria
- Procurement Process
- Prototype Testing
- Production Testing

UNCLASSIFIED | 2

What Exactly is an LP-50? (Low Pressure, ~50 liters)

- A container <u>system</u> (primary & secondary) used to store molecular tritium
- Connects to TGCS (gloveboxes)
- Connects to TGHS (process piping)

UNCLASSIFIED

History of LP-50s

 1950s Atomic Energy Commission/Dept. of Energy(AEC/DOE) approved shipping container.

 Thru Savannah River Site(SRS) routinely 1980's shipped tritium gas to LANL using LP-50s.

 Early SRS discontinued LP-50 shipment and 1990s started shipping HTVs & PVs in UC-609s.

Thru LANL / WETF bulk tritium gas storage
 Present

UNCLASSIFIED

Original LP-50 Shortcomings

Not designed to be used as a storage container

- When used for storage: valve failure if repeatedly over-tightened
- Not ASME certified pressure vessel
- No record of drop testing

Next generation container needed to buffer HTV loading and shipping operations

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

New LP-50 "Clone" Design Criteria

- Sized for 10 years of tritium decay
- 250°F (121.1°C) temperature rating
- 2 to 4 moles storage limit of tritium molecular gas
- 10' secondary drop test, 4' primary drop test
- Able to connect to TGCS & TGHS
- < 1 x 10e-3 std cc/sec leak rate to entire assembly</p>
- < 1 x 10e-9 std cc/sec vacuum leak rate to primary only</p>
- Minimize changes in WETF
- Be ergonomic

New LP-50 "Clone" Features

- All-metal VCR fitting Swagelok bellows valve
- ASME stamped (P = 80 psig, S = 30 psig)
- Drop Tested (Primary & Secondary)
- 2.4 moles of T₂ gas storage (initial fill 2000 torr, RT)
- Only design changes to facility were pin length & location on existing lifting cart & load-in port
- Also, thermal well added to Primary

The LP-50 Replacement Clone

Al 6061-16 Secondary Flange, Shell & Skirt SS 316L Secondary Lid Valve & Pressure Gauge

> Swagelok Bellow Series Valves nale and 1 female) and thermal well

SS 316L Primary Shell & Skirt

0-Ring Seal EPDM

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Procurement Process (Divide and Conquer)

Phase 1: Prototype Design and Review Completed Sept 2015

 Phase 2: Prototype Fabrication and Evaluation Testing – One Complete System Built Completed Feb 2017

 Phase 3: Fabrication and Certify Final Container System
 Completed March 2018

LP-50 "Clone" Prototype Tests (Phase 2)

- ASME certified pressure test
 1.1 MAWP (pneumatic to both vessels)
- Pre/Post drop inside-out leak test requirement: 10e-3 std cc /sec He
- Mass spectrometer level II helium leak tests

LP-50 "Clone" Prototype Tests (Phase 2 Cont'd)

- Ergonomic evaluations (simulate actual operations as much as practical)
- Functional evaluations
 - Mechanically "fitted" to Load-In Glovebox
 - Placed within existing seismically qualified rack
 - Noted required pin length and location design changes
 - Connecting to Process Piping not practical

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LP-50 "Clone" Prototype Tests (Phase 2 Cont'd)

UNCLASSIFIED

Drop Tests (Phase 2 Cont'd)

- Primary vessel, drop test:
 - Pressurized to 80 psig with helium
 - Lifted 4 feet bottom-up at 45° angle and dropped on concrete floor
 - Impact point contacted floor closest to valve/valve stem
 - Visual inspection reveal crumpled top skirt, no discernable valve/valve stem damage

Drop Tests (Phase 2 Cont'd)

- Secondary vessel, drop test:
 - Primary vessel inserted into secondary vessel
 - Secondary vessel pressurized to 30 psig with helium
 - Lifted 4 feet bottom-up at 45° angle and dropped on concrete floor
 - Visual inspection revealed bent crash skirt, flange and valve stem
 - Valve stem deformation caused by inertial force, not direct contact with skirt or floor

UNCLASSIFIED

Final Production (Phase 3)

- Finalize design and ASME calculations
- Build 4 full assemblies (drop 1 / deliver 3):
 - Included vacuum leak testing on each Primary to 1.0e-9 std cc/sec using respective Secondary as bell jar
- Quality includes ASME data reports, C of C, welding certs & procedures, test reports
- Nothing new follow through!

Lessons Learned Overall program went well, but...

- Phase 1 & 2 type activities (i.e. prototype) should be time & effort, not fixed firm price
- Phase 3 (final production) can be fixed firm price
- When leak checking, specify what stable background level is desired upfront
- Perform all fabrication testing during prototype testing

Questions? Thank You to Our Entire Team!

UNCLASSIFIED

UNCLASSIFIED

What Exactly is an LP-50? (Low Pressure, ~50 liters) (Cont'd) Original Drawing View (circa 1954)

The LP-50 Replacement Clone • Los Alamos Compare size between new and old

Pressure Rating	80 psig @ 250 F UNCLASSIFIE	25.2 psi @ 300 F	

Component	Pressure Rating*	Approximate Volume, liters	Approximate Weight**, lbf	
Secondary Vessel				_
Main Body	30 psig at 250 °F	79.0	38	tota
(AL 6061-T6)				ubt
Secondary Vessel Lid (SS 316L)	30 psig at 250 °F		30	68 S
Primary Vessel (SS 316L)	80 psig at 250 °F	22.1	27	

*All ratings are per ASME BPVC Section VIII, DIV 1-2015.

**Total weight of full assembly is 95 lbf. Total weight of Secondary Main Body plus Primary is 65 lbf.

Leak Testing Before Drop Tests General (Phase 2 Cont'd)

- Preliminary probe of all fittings/connections
- Vessel enclosed in plastic bag and left to "soak" for a minimum of 30 minutes to allow accumulation of helium (before & after drops)
- Probe then inserted to top of bag
- Background reading of 1.4e-6 atm cc/sec He was observed (52°F) for both vessels
- NDL after each drop

History of LP-50s

Thru Present

1950s - Atomic Energy Commission/Dept. of Energy(AEC/DOE) approved shipping container.

Thru Savannah River Site(SRS) routinely
 1980s shipped tritium gas to LANL using LP-50s.

 Early SRS discontinued LP-50 shipment and 1990s started shipping HTVs & PVs in UC-609s (DOT approved Type B shipping container).
 SRS also starts using New Replacement Tritium Facility (mercury free!).

1990s LANL / WETF bulk tritium gas storage

Original LP-50 Shortcomings Why we need to go through this process

- Not designed to be used as a storage container
 - When used for storage: valve failure if repeatedly over-tightened
 - Valve replaced by cutting disk containing valve from top of container and re-welding new valve in place
 - Tritium-permeated, mercury contaminated metal
 - Common failure: welded disk to body joint
 - Not ASME certified pressure vessel
 - No record of drop testing

Procurement Process (Divide and Conquer)

Phase 1: Prototype Design and Review Included both solted and clamp design feature

Phase 2: Prototype Fabrication and Evaluation Testing – One Complete System Built

 Design changes include elimination of clamp design option plus fabrication observations

Phase 3: Fabrication and Centify Final Container System

- Build 4 complete systems, Drop test one complete system
- Accept 3 complete systems

UNCLASSIFIED

UNCLASSIFIED | 25

Drop Tests & Helium Leak Tests (Phase 2 Cont'd)

UNCLASSIFIED

Los Alamos

NATIONAL LABORATORY

Drop Tests & Helium Leak Tests (Phase 2 Cont'd)

- Secondary vessel, drop test:
 - De-pressurized primary vessel to 30 psig with helium
 - Primary vessel inserted into secondary vessel, top plate installed then torqued to 5 ft/lbs
 - Secondary vessel pressurized to 30 psig with helium

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA